首页>学习方法>高等数学学习方法

收藏本站     推荐学习方法    返回首页

 

2011年考研数学冲刺阶段高效复习法

来源:文都教育


金秋送爽,距离2011年考研还有3个月时间,如何把握考前的这段时间,也将成为决定结果的一大关键。建议首先根据自己复习的实际状况合理安排好复习计划,不管是看书还是做题,一定夯实基础知识为先,将基本概念、性质、定理的理解深入下去,从而将这些基础知识转化为自己的东西,应用起来才能得心应手。此外,高等数学、线性代数、概率论与数理统计当中都有不同数量的典型题型,特别是近几年真题中频繁亮相的热门题型,一定要把解题的思路和方法技巧集中总结起来,并且经常结合一些题目回顾、温习,达到熟能生巧。建立自己的错题本并时常翻看,避免在同样的知识点上重复出错, 考试也就不会枉丢冤枉分了。
一、函数、极限、连续。高频考点:分段函数极限或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
二、一元函数微分学高频考点:导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛必达法则求未定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日 中值定理、柯西中值定理和泰勒中值定理及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。
三、一元函数积分学高频考点:不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力做功等。
四、向量代数和空间解析几何。高频考点:求向量的数量积、向量积及混合积;求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转面方程。
五、多元函数微分学。高频考点:偏导数存在可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;二元、三元函数的方向导数和梯度;曲面和空间曲线的切平面和法线;多元函数极值或条件极值在几何、物理与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。
六、多元函数积分学。这 部分是数学一的内容,高频考点包括二、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线和曲面积分计算;第二型(对坐标)曲线积分计算、格林公 式、斯托克斯公式;第二型(对坐标)曲面积分计算、高斯公式;梯度、散度、旋度的综合计算;重积分和线面积分应用;(考试大)求面积,体积,重量,重心, 引力,变力做功等。
七、无穷级数高频考点:级数的收敛、发散、绝对收敛和条件收敛;幂级数的收敛半径和收敛域;幂级数的和函数或数项级数的和;函数展开为幂级数(包括写出收敛域)或傅立叶级数;由傅立叶级数确定其在某点的和(通常要用狄里克雷定理)。
八、微分方程高频考点:一阶微分方程的通解或特解;可降阶方程;线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。
除了以上分章节的考查重点,还有跨章节乃至跨科目的综合考查题,近几年出现的有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题等。
数 学作为一门经典学科,在知识点的范围和要求上一般没有很大浮动,但同时数学这门学科的奥妙之处也体现在题目的千变万化上。看似眼花缭乱没有规律可循,实质 万变不离其宗,基本的概念、形式、定理都是经过数百年的验证铸就的完善理论体系,纵使考题有不计其数的具体形式,考查的内容无外乎上述的基本知识及建立在 对其深入理解基础上的应用,把握最本质的定义、原理才是以不变应万变的终极捷径所在。

 

高等数学学习方法(一)


来源: 学生菁园小区

高等数学是高等学校一门重要的基础课,学好它对每一个大学生都是极为重要的。 这里,就学好这门课的学习方法提一点建议供同学们参考:
一、 把握三个环节,提高学习效率
㈠课前预习:了解老师即将讲什么内容,相应地复习与之相关内容。
㈡认真上课:注意老师的讲解方法和思路,其分析问题和解决问题的过程,
记好课堂笔记,听课是一个全身心投入----听、记、思相结合的过程。
㈢课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少;
然后打开笔记、教材,完善笔记,沟通联系;最后完成作业。
二、 在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架。
三、 按"新=陈+差异"思路理解深化学习知识。
四、 "三人行,则必有我师",参加老师的辅导,向同学请教并相互讨论。
五、 处理数学问题的基本方法:
㈠分割求和法;
㈡以直求曲法;
㈢恒等变形法:
①等量加减法;②乘除因子法; ③积分求导法;
④三角代换法; ⑤数形结合法;⑥关系迭代法;
⑦递推公式法;⑧相互沟通法; ⑨前后夹击法;
⑩反思求证法;⑾构造函数法;⑿逐步分解法。
六、 阶段复习与全面巩固相结合。

学习方法五原则

学习方法与学习的过程、阶段、心理条件等有着密切的联系,它不但蕴含着对学习规律的认识,而且也反映了对学习内容理解的程度。在一定意义上,它还是一种 带有个性特征的学习风格。学习方法因人而异,但正确的学习方法应该遵循以下几个原则:循序渐进、熟读精思、自求自得、博约结合、知行统一。
1."循序渐进"──就是人们按照学科的知识体系和自身的智能条件,系统而有步骤地进行学习。它要求人们应注重基础,切忌好高骛远,急于求成。循序渐进的原则体现为:一要打好基础。二要由易到难。三要量力而行。
2."熟读精思"──就是要根据记忆和理解的辩证关系,把记忆与理解紧密结合起来,两者不可偏废。我们知道记忆与理解是密切联系、相辅相成的。一方面, 只有在记忆的基础上进行理解,理解才能透彻;另一方面,只有在理解的参与下进行记忆,记忆才会牢固,"熟读",要做到"三到":心到、眼到、口到。"精思",要善于提出问题和解决问题,用"自我诘难法"和"众说诘难法"去质疑问难。
3."自求自得"──就是要充分发挥学习的主动性和积极性,尽可能挖掘自我内在的学习潜力,培养和提高自学能力。自求自得的原则要求不要为读书而读书,应当把所学的知识加以消化吸收,变成自己的东西。
4."博约结合"──就是要根据广搏和精研的辩证关系,把广博和精研结合起来,众所周知,博与约的关系是在博的基础上去约,在约的指导下去博,博约结合,相互促进。坚持博约结合,一是要广泛阅读。二是精读。
5."知行统一"──就是要根据认识与实践的辩证关系,把学习和实践结合起来,切忌学而不用。"知者行之始,行者知之成",以知为指导的行才能行之有 效,脱离知的行则是盲动。同样,以行验证的知才是真知灼见,脱离行的知则是空知。因此,知行统一要注重实践:一是要善于在实践中学习,边实践、边学习、边 积累。二是躬行实践,即把学习得来的知识,用在实际工作中,解决实际问题。

高等数学学习方法(二)



●全面复习,把书读薄

从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如1998年考研数学(一)中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面,不留遗漏。

全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容、各方法的本质联系,把要记的东西缩小到最小程度, (要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识)。


●突出重点,精益求精


在考试大纲要求中,对内容有理解、了解、知道三个层次的要求;对方法有掌握、会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考研中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解,即抓住主要内容不是放弃次要内容,导致孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式.由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广。比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精。

●基本训练 反复进行


学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张"题海"战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明、基本公式的推导以及一些基本练习题,要做到不用书写,就象棋手下"盲棋"一样,只需用脑子默想,即能得到正确答案。基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实人会有粗心的时候,但基本功扎实的人,出了错立即会发现,很少会"粗心"地出错。

 

2011年考研数学如何进行分阶段复习

来源:中国研究生招生信息网

建议将整个考研复习过程分为如下几个阶段: 
一、阶段划分建议 
  (1)起跑准备阶段,搜集资料,制定计划; 
(2)系统的考研复习阶段,可以主要以原来大一年时用过的教材为复习依据,应该在8月底能够结束,自己要排好进度表,限时完成。参加辅导班的同学一定要向辅导老师索要进度安排表,再配合老师的进度具体制订自己的复习计划和进度。 
很多学生都有这样的感觉“看看书好像都懂,做做题觉得很难”。其原因有两点:一个原因是实际上没真正把书读懂,有一些同学看数学书像看小说一样,一知半 解地一页一页往后翻,没能做到融会贯通,怎么样才算真正看懂,最简单的方法,就是边看书,边动笔,边思考分析。另一原因是做题的数量还不够,也就是说考研 复习的第一阶段和下面的第二阶段在时间上不能截然分开;虽应有序进行,但也是相辅相成,互相促进的。第一阶段以看书为主,辅以做题;第二阶段以做题为主, 辅以看书。 
(3)强化训练阶段,强化训练阶段则应该主要以历届考研真题作为复习依据,大运动量的题海战术是绝对必要的; 
(4)模拟冲刺阶段,必须是真刀真枪的实战演练,模拟冲刺阶段一定要参加一个复习辅导班,一定要做事前从来也没看到过的试卷,否则不就是在作弊吗。 
二、各阶段的时间安排 
  起跑准备阶段,搜集准备资料,必须不断进行、逐步完善, 
系统复习阶段,花5个月时间,应该在7月底结束; 
强化训练阶段,花4个月时间,应当在11月底结束; 
最后进行模拟冲刺。 
三、各阶段的复习目标 
(1)系统复习阶段的目标是: 
●对于以前学过的知识有一个回顾总结; 
●对于考研大纲能做到清楚明确。 
(2)强化训练阶段的目标是要提高拿分数的能力: 
●深刻理解各种基本概念、熟练掌握各种基本运算,确保考试时基本题的分数一分不漏地拿足; 
●掌握一定的技巧、训练一定的综合能力,争取把综合题的分数一分一分地拿够。 
(3)模拟冲刺的目标: 
●全面检查复习情况; 
●补足复习时遗漏环节; 
●适应考试时间限制及熟悉并学会临场恰当如何安排解题进程与分配时间。

 

2011年考研数学11月至12月复习详细计划

来源:考试大


总体安排
11月--12月:完成真题试卷模拟考试,错题总结。结合薄弱点,看复习指南,练上面的习题。(也可根据个人情况定时间长短)。如果提前完成任务一定要紧接着进入下一阶段的学习中。
12月—12月中旬:看陈文灯的<数学题型集粹与练习题集>,或是李永乐的135题。最好建议,不管大家用的是陈的复习指南还是李的复习指南,135题都看下,特别是对于想获取高分的同学。这本书实在是赞,解答详细,知识点分明,由于不是套卷形式,也不会打击到自信心。至于数学题集粹与练习 题集可以依据个人情况而定,如果本身复习指南还没看个3—4遍,这本书就没必要做了。复习指南是基础,一定要重视。以上推荐的书籍都是在已经把复习指南看得很熟的情况下建议使用。
12月中旬—1月:冲刺阶段就建议同学们把留下的几套真题拿来练练手,测试一下水平,找找自信(因为,其实很多题 目已经在复习指南上出现过,对各位考生来说可谓轻而易举了),提早培养自己的考场感觉。在做真题时,依然要按照上面讲的方法,查漏补缺,不放过任意一个死 区。
1月—考试:前面的大量工作都是为这个阶段的复习打基础呢,自己多月积累的“错题本”就是这个时期的宝典了,不用再做题,只要把以前错的题在看看,薄弱的知识点在梳理一下,容易遗忘的公式、生疏的定理在巩固一下。
此环节考生存在的误区
大家注意:
第一,“分区复习”。很多同学都倾向于把数学分为三区—高数、线代、概率,先把高数复习得滚瓜烂熟了,再着手复习剩下两门。这样做有几点危害:首先,如 果你在一段时间只是看高数,看个两三遍,确实可以在短时间内有很大的进步,公式也都记住了,题目也做的可以背出来了。基本上在高数方面所向无敌了。但不要 忘记人的遗忘特性有多么恐怖。等你放下高数书,花很多时间饿补线代、概率时,辛辛苦苦在你脑中积攒下来的知识又会丢回到课本中。
第二,看书不算题。有的同学会看很多辅导书,但依然得不到高分,就是因为没有动笔计算,没有提高自身的计算能力,但考研并不是考难题,往往是中等难度甚至是基础题加上较复杂的计算。所以没有强大的计算能力,是无法在考研数学中获胜。
第三,和其他同学比进度。每个人的学习能力不同,吸收能力不同,复习计划也不同,知识掌握程度不同,没有任何可比性。请记住你的最大的对手就是自己,应该每人反思是否比前一天有进步,这样你才能在强大的推动力下步步向前,日日进步。

 

2011年考研数学线性代数重点内容和典型题型分析

来源:万学海文 2010/9/15

2010年9月3日教育部考试中心发布了2011年全国硕士研究生入学统一考试数学考试大纲,试卷题型结构为:单项选择题 8小题,每小题4分,共32 分;填空题6小题,每小题4分,共24分,解答题(包括证明题)9小题,共94分;均与2010年全国硕士研究生入学统一考试数学考试大纲相同。复习范围无调整,大家可以按照自己原来的计划进行下去,为了帮助考生有效地进行考研复习,我们来分析考研数学线性代数部分的重点内容和典型题型。
  线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,必须注重计算能力。线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的,下面就将线代中重点内容和典型题型做以总结。
   行列式在整份试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、 正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。行列式的重点内容是掌握计算行 列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算。
   矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点 考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。
   向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用, 还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。关于每个重要题型 的具体方法以及例题见《全国硕士研究生入学统一考试数学120种常考题型精讲》。
   往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证 明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、 非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
   特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化由特征值或特征向量反求A、有关实对称矩阵的问题。
   由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判 别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

 

 


 

 

<<返回首页